recently reported (Lynch, Stamford, Magnus \& Kuehne, M. E. \& Marko, I. (1990). The Alkaloids, Vol. 37, edited Davis, 1991).

The National Institutes of Health (GM 29801 to PM ) are thanked for their support of this research.

## References

Cromer, D. T. \& Liberman, D. (1970). J. Chem. Phys. 53, 1891-1898.
Cromer, D. T. \& Mann, J. B. (1968). Acta Cryst. A24, 321-324.
Gadol, S. M. \& Davis, R. E. (1982). Organometalics, 1, 1607-1613. by A. Brossi \& M. Suffness, pp. 77-132.
Lynch, V. M., Stamford, A., Magnus, P. \& Davis, B. E. (1991). Acta Cryst. Accepted.
Magnus, P, Ladlow, M., Elliot, J. \& Kim, C. S. (1989). J. Chem. Soc. Chem. Commun. pp. 518-520.
Magnus, P., Stamford, A. \& Ladlow, M. (1990). J. Am. Chem. Soc. In the press.
Moncrief, J. W. \& Lipscomb, W. N. (1966). Acta Cryst. 21, 322-331.
Sheldrick, G. M. (1988). SHELXTL-Plus88 Structure Determination Software Programs. Nicolet Instrument Corporation, Madison, Wisconsin, USA.
Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3175-3187.

Acta Cryst. (1991). C47, 1345-1347

# Determination of the Absolute Configuration of a Novel Dipeptide Isostere 

By Vincent M. Lynch, Richard E. Austin, Stephen F. Martin and Thaddeus George<br>Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, TX 78712, USA

(Received 15 October 1990; accepted 20 November 1990)


#### Abstract

R-\left[1 \alpha\left(1 R^{*}, 2 R^{*}, 3 S^{*}\right), 2 \beta, 5 \alpha\right]\right\}-2\)-(4-Mor-pholinocarbonyl)-3-phenylcyclopropane 2-(1-methyl-ethyl)-5-methylcyclohexyl ester, $\mathrm{C}_{25} \mathrm{H}_{35} \mathrm{NO}_{4}, M_{r}=$ 413.56, orthorhombic, $P 2_{1} 2_{1} 2_{1}, a=9 \cdot 359$ (2), $b=$ $10 \cdot 1172$ (14), $c=24 \cdot 710$ (4) $\AA, \quad V=2339 \cdot 8$ (6) $\AA^{3}, Z$ $=4, \quad D_{x}=1.17 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \mu=0.7332 \mathrm{~cm}^{-1}, \quad$ Mo $K \alpha$ radiation, $\lambda=0.7107 \AA, F(000)=896, T=198 \mathrm{~K}, R$ $=0.0475$ for 2460 reflections $\left[F_{o} \geq 4 \sigma\left(F_{o}\right)\right]$. The assignment of the absolute configuration was based on internal comparison to the $(-)$-menthol moiety. The morpholenyl and cyclohexyl rings are in the chair conformation. The amide group is essentially planar [max. deviation 0.025 (2) $\AA$ for N19] resulting in a close non-bonded contact between the amide oxygen, O18, and $\mathrm{H} 24 a$ of $2 \cdot 24$ (4) $\AA$.


Experimental. (1) was synthesized by the dicyclo-hexylcarbodiimide/4-dimethylaminopyridine mediated esterification of the corresponding optically

(1)

0108-2701/91/061345-03\$03.00
active carboxylic acid with ( - )-menthol (Doyle, Pieters, Martin, Austin, Oalmann \& Muller, 1991; Martin, Austin \& Oalmann, 1990). Crystals of (1) were obtained by slow evaporation from a carbon tetrachloride-diethyl ether solution. The data crystal was a large block of approximate dimensions $0.56 \times$ $0.70 \times 0.76 \mathrm{~mm}$. Data were collected on a Nicolet $R 3$ diffractometer using a graphite monochromator and a Nicolet LT-2 low-temperature delivery system. Lattice parameters were obtained from the leastsquares refinement of 40 reflections with $25 \cdot 2<2 \theta<$ $27.8^{\circ}$. Data were collected using the $\omega$-scan technique, with a $1.2^{\circ} \omega$ scan at $4-8^{\circ} \mathrm{min}^{-1}$ and a $2 \theta$ range from $4 \cdot 0-55 \cdot 0^{\circ}(h=0 \rightarrow 11, k=0 \rightarrow 12, l=0 \rightarrow$ 32). 3068 reflections were collected. Four reflections ( $354, \overline{3}, \overline{2}, \overline{14}, \overline{3}, 2,14,354$ ) were remeasured every 96 reflections to monitor instrument and crystal stability. A smoothed curve of the intensities of these check reflections was used to scale the data. The scaling factor ranged from $0 \cdot 995-1 \cdot 01$. Data were also corrected for Lp effects but not absorption. 608 reflections were considered unobserved, $F_{o}<4 \sigma\left(F_{o}\right)$. Data reduction and decay correction were performed using the Nicolet XRD SHELXTL-Plus software package (Sheldrick, 1988). The structure was solved by direct methods and refined by full-matrix least squares (Sheldrick, 1988). In all, 399 parameters were refined. The non-H atoms were refined with anisotropic thermal parameters. All H -atom positions were obtained from a $\Delta F$ map and refined with isotropic thermal parameters. The bond lengths © 1991 International Union of Crystallography

Table 1. Fractional coordinates and equivalent isotropic thermal parameters $\left(\AA^{2}\right)$ for the non- H atoms


Fig. 1. View of (1) showing the atom-labeling scheme. The non-H atoms are scaled to the $30 \%$ probability level while the H atoms are drawn to an arbitrary size. Methyl $\mathbf{H}$ atoms are omitted for clarity.
and/or angles for the H atoms of C 14 and C 15 did not refine to chemically reasonable values and, therefore, were idealized. The function $\sum w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2}$ was minimized, where $w=1 /\left[\sigma\left(F_{o}\right)\right]^{2}$ and $\sigma\left(F_{o}\right)=$ $0 \cdot 5 k I^{-1 / 2}\left\{[\sigma(I)]^{2}+(0.02 I)^{2}\right\}^{1 / 2}$. The intensity, $I$, is given by $\left(I_{\text {peak }}-I_{\text {background }}\right) \times($ scan rate $)$, where 0.02 is a factor to downweight intense reflections and to account for instrument instability and $k$ is the correction due to Lp effects and decay. $\sigma(I)$ was estimated from counting statistics; $\sigma(I)=\left[\left(I_{\text {peak }}+I_{\text {background }}\right)^{1 / 2}\right.$ $\times$ (scan rate)]. The final $R=0.0475$ for 2460 reflections, with $w R=0.0520 \quad\left(R_{\text {all }}=0.0601, \quad w R_{\text {all }}=\right.$ 0.0540 ) and goodness of fit, $S=1.764$. The maximum $|\Delta / \sigma|<0.1$ in the final refinement cycle and the min. and max. peaks in the final $\Delta F$ map were

Table 2. Bond lengths $(\AA)$ and angles $\left({ }^{\circ}\right)$ for the non -H
atoms of (1)

| 1 | 2 | 3 | 1-2 | 1-2-3 |
| :---: | :---: | :---: | :---: | :---: |
| C2 | Cl | C3 | 1.503 (4) | 60.4 (2) |
| C3 | Cl | C4 | 1.517 (4) | 117.5 (2) |
| C4 | C1 | C2 | 1.478 (4) | 117.5 (2) |
| C3 | C2 | C17 | 1.519 (3) | 119.8 (2) |
| C3 | C2 | Cl |  | 60.3 (2) |
| C17 | C2 | Cl | 1.514 (3) | $115 \cdot 9$ (2) |
| C25 | C3 | Cl | 1.487 (3) | $123 \cdot 3$ (2) |
| C25 | C3 | C2 |  | 123.8 (2) |
| Cl | C3 | C2 |  | 59.3 (2) |
| O5 | C4 | 06 | 1-205 (3) | 124.8 (2) |
| O5 | C4 | Cl |  | $125 \cdot 1$ (2) |
| O6 | C4 | Cl | 1.334 (3) | $110 \cdot 1$ (2) |
| C7 | O6 | C4 | 1.466 (4) | 118.7 (2) |
| C8 | C7 | C 12 | 1.537 (4) | 113.2 (2) |
| C8 | C7 | O6 |  | 106.6 (2) |
| C12 | C7 | O6 | 1.496 (4) | 107.5 (2) |
| C9 | C8 | C14 | 1.535 (5) | 111.3 (3) |
| C9 | C8 | C7 |  | 106.5 (3) |
| C14 | C8 | C7 | 1.553 (5) | 117.1 (3) |
| Cl 0 | C9 | C8 | 1.528 (6) | 111.3 (3) |
| C11 | C10 | C9 | 1.494 (6) | 112.0 (3) |
| C12 | C11 | Cl 3 | 1.527 (5) | 111.2 (4) |
| C12 | C11 | C10 |  | 109.7 (3) |
| C13 | C11 | C10 | $1 \cdot 510$ (7) | 113.2 (4) |
| C7 | C12 | C11 |  | 112.7 (3) |
| Cl 5 | C14 | C16 | $1 \cdot 499$ (7) | 112.6 (4) |
| Cl 5 | C14 | C8 |  | 114.4 (3) |
| C16 | C14 | C8 | 1.533 (6) | 112.5 (4) |
| 018 | C17 | N19 | 1.222 (3) | 122.9 (2) |
| 018 | C17 | C2 |  | 121.5 (2) |
| N19 | C17 | C2 | 1.344 (4) | 115.6 (2) |
| C20 | N19 | C24 | 1.457 (4) | 113.7 (3) |
| C20 | N19 | C 17 |  | $126 \cdot 3$ (2) |
| C24 | N19 | C 17 | 1.469 (4) | 119.8 (3) |
| C21 | C20 | N19 | 1.500 (5) | $110 \cdot 1$ (3) |
| 022 | C21 | C20 | 1.424 (4) | 111.1 (3) |
| C23 | 022 | C21 | 1.419 (5) | 109.9 (3) |
| C24 | C23 | 022 | 1.508 (6) | 111.9 (3) |
| N19 | C24 | C23 |  | 108.8 (3) |
| C26 | C25 | C30 | $1 \cdot 396$ (4) | 118.1 (2) |
| C26 | C25 | C3 |  | 123.7 (2) |
| C30 | C25 | C3 | $1 \cdot 389$ (4) | 118.2 (2) |
| C27 | C26 | C25 | 1.397 (4) | 120.0 (3) |
| C28 | C27 | C26 | 1.356 (5) | $120 \cdot 6$ (3) |
| C29 | C28 | C27 | 1.367 (5) | $120 \cdot 3$ (3) |
| C30 | C29 | C28 | 1.391 (4) | 120.1 (3) |
| C25 | C30 | C29 |  | $120 \cdot 7$ (3) |

-0.22 and $0.20 \mathrm{e}^{\AA^{-3}}$, respectively. The scattering factors for the non-H atoms were taken from Cromer \& Mann (1968), with the anomalousdispersion corrections taken from the work of Cromer \& Liberman (1970). The scattering factors for the H atoms were obtained from Stewart, Davidson \& Simpson (1965). Values used to calculate the linear absorption coefficient are from International Tables for X-ray Crystallography (1974, Vol. IV, p. 55).* Figures were generated using SHELXTL-Plus (Sheldrick, 1988). The positional and thermal parameters for non- H atoms are listed in Table 1, while the bond lengths and angles for the non-H atoms are listed in Table 2. The atomlabeling scheme is shown in Fig. 1. Other computer

[^0]programs used in this work are listed in reference 11 of Gadol \& Davis (1982).

Related literature. Appropriately substituted 1,2,3cyclopropanes have potential uses as replacements for the dipeptide unit in the design of new enzyme inhibitors and peptide hormone antagonists. A general method for the stereoselective synthesis of 1,2,3-trisubstituted cyclopropanes has been reported (Martin, Austin \& Oalmann, 1990).

Funding for this project was supplied by the Robert A. Welch Foundation (F-652) and the National Institutes of Health (GM 25439) to SFM.

## References

Cromer, D. T. \& Liberman, D. (1970). J. Chem. Phys. 53, 1891-1898.
Cromer, D. T. \& Mann, J. B. (1968). Acta Cryst. A24, 321324.

Doyle, M. P., Pieters, R. J., Martin, S. F., Austin, R. E., Oalmann, C. J. \& Muller, P. (1991). J. Am. Chem. Soc. 113, 1423-1424.
Gadol, S. M. \& Davis, R. E. (1982). Organometallics, 1, 1607-1613.
Martin, S. F., Austin, R. E. \& Oalmann, C. J. (1990). Tetrahedron Lett. 31, 4731-4734.
Sheldrick, G. M. (1988). SHELXTL-Plus88. Structure Determination Software Programs. Nicolet Instrument Corporation, Madison, Wisconsin, USA.
Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3175-3187.

Acta Cryst. (1991). C47, 1347-1348

# Structure of 1-(2-Methyl-2,3-dihydrobenzothiazol-2-yl)-2-propanone 

By Guan-Yeow Yeap<br>School of Chemical Sciences, Universiti Sains Malaysia, Minden, 11800 Penang, Malaysia<br>Hoong-Kun Fun<br>School of Physics, Universiti Sains Malaysia, Minden, 11800 Penang, Malaysia<br>and Soon-Beng Teo and Siang-Guan Teoh*<br>School of Chemical Sciences, Universiti Sains Malaysia, Minden, 11800 Penang, Malaysia

(Received 30 October 1990; accepted 10 December 1990)


#### Abstract

C}_{11} \mathrm{H}_{13} \mathrm{NOS}, \quad M_{r}=207 \cdot 29\), monoclinic, $P 2_{1} / c, a \doteq 8.433$ (2), $b=12.932$ (1), $c=10.503$ (3) $\AA$, $\beta=111.77(1)^{\circ}, \quad V=1063.7(7) \AA^{3}, \quad Z=4, \quad D_{m}=$ $1 \cdot 307$ (flotation in nitromethane/chloroform), $D_{x}=$ $1.294 \mathrm{Mg} \mathrm{m}^{-3}, \quad \lambda($ Mo $K \alpha)=0.71069 \AA, \quad \mu=$ $0.26 \mathrm{~mm}^{-1}, F(000)=440, T=298 \mathrm{~K}, R=0.0574$ for 1752 observed reflections $[I>2 \cdot 5 \sigma(I)]$. The phenyl ring is coplanar with the S and N atoms of the fused five-membered ring with torsion angles $\mathrm{S}-\mathrm{C}(6)-$ $\mathrm{C}(1)-\mathrm{C}(2)$ of $-178 \cdot 0(2)$ and $\mathrm{N}-\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(5)$ of $176 \cdot 1(3)^{\circ}$, but $\mathrm{C}(7)$ is displaced from the mean plane of the phenyl ring by 0.322 (2) $\AA$. The S-C(6) distance $[1.748(2) \AA]$ is less than that of $S-C(7)$ $[1.846(2) \AA]$ owing to the fact that $\mathrm{C}(7)$ is $s p^{3}$ hybridized whereas $C(6)$ is part of the aromatic ring. Similar arguments pertain to the difference in the $\mathrm{N}-\mathrm{C}$ distances; $\mathrm{N}-\mathrm{C}(1)=1.388$ (3) and $\mathrm{N}-\mathrm{C}(7)=$ 1.463 (3) A.


[^1]0108-2701/91/061347-02\$03.00

Experimental. The title compound was prepared by a previously reported method (Cefalu, Bosco, Bonati, Maggio \& Barbieri, 1970). Preliminary data obtained from Weissenberg and Buerger precession photographs yielded approximate cell dimensions and showed monoclinic symmetry, space group $P 2_{1} / c$. Data collection on a crystal $0.3 \times 0.2 \times 0.2 \mathrm{~mm}$ was performed on a Syntex $P 2_{1}$ diffractometer in $2 \theta / \theta$ mode ( $0<h<10,0<k<14,-12<l<12$ ) out to $2 \theta$ (max.) of $52 \cdot 2^{\circ}$. Variable scan speed of $5 \cdot 0-29 \cdot 3^{\circ}$ $\min ^{-1}$ was used. Lattice parameters refined using 30 reflections in the range $35<2 \theta<45^{\circ}$. Standard reflection $0 \overline{1} 1$ checked every 50 reflections: no significant deviation. Data were corrected for Lorentz and polarization effects. 2317 reflections were collected, 2070 unique ( $R_{\text {int }}=0.0807$ ), of which 1752 observed reflections with $I>2 \cdot 5 \sigma(I)$ were used for refinement of the structure. Structure solved by direct methods, SHELXS86 (Sheldrick, 1986) and refined using SHELX76 (Sheldrick, 1976). Scattering factors for C, H, N, O and S inlaid in SHELX76.


[^0]:    * Lists of structure factors, anisotropic thermal parameters, bond distances and angles involving $\mathbf{H}$ atoms, torsion angles, least-squares planes and H -atom parameters and a unit-cell packing diagram have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 53775 ( 21 pp .). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

[^1]:    * Author to whom all correspondence should be addressed.

